The Quantitative side of Offsetting

Here is a calculation aiming to put a figure on the emissions associated with installing a Time and Tide Bell.

1. Casting			CO ₂ em	itted
Mass of bell	750	kg		
Specific heat capacity of bronze	0.435	kJ/kg °C		
Casting temperature	1,150	°C		
Heat required (100% efficiency)	375,188	kJ		
conversion factor	3,600	kWhr/kg		
i.e.	104	kWhr		
Estimate for losses, wastage, etc	80%			
Total energy embodied in bell	188	kWhr		
Emissions from grid electricity	43	kg/kWhr		
Total Co2 emissions from one casting	8,067	kg	8,067	
2. Mounting				
Average weight	150	kg		
Assumed made of stainless steel				
Embodied carbon /kg	6.15	kg CO ₂ /kg		
Total embodied CO ₂	923	kg CO ₂	923	
2. Travel, installation costs, etc				
Visits to bell site	8			
Average distance round trip	200	miles		
Total distance	1,600	miles		
Assumed mpg	25			
Gallons of diesel	64	g		
litres	291	I		
CO ₂ embodied in diesel	2.68	kg/l		
Total CO ₂ emissions	780	kg CO ₂	780	
			9,769	kg CO ₂

There are numerous assumptions here, and the result certainly has spurious accuracy. An interpretation in round numbers is:

Casting	8 tonnes	
Mounting:	1 tonne	
Other costs:	1 tonne	
Total:	10 tonnes	

For comparative purposes here is an outline calculation of the tree-planting implications of offsetting emissions from the average UK household couched in terms of CO₂ equivalent. It is adapted from the United Bank of Carbon website.

Domestic example: a large mature tree may contain as much as 1 tonne of carbon, so ultimately you need to achieve around 1 new mature tree for every 4 tonnes of CO_2e that you emit – because your tree will remove 1 tonne of carbon from every 3.67 tonnes of CO_2e (releasing the oxygen and other gases harmlessly back into the atmosphere).

To mitigate the UK current average individual footprint (of 11 tonnes CO₂e per year), you'll need to 'achieve' about 3 new large mature trees per year. (Remember that while your trees are reaching maturity, you'll be responsible for further emissions, so you need to make sure all your trees will grow to full size, and you'll also to invest every year to cover that year's emissions).

Don't forget that ideally each tree will be in a new, permanent forest – so it's replaced naturally by another, ad infinitum. Otherwise the carbon will just go back into the atmosphere when the last tree dies or is felled – and then either rots or is burned. But you can't just plant one tree and hope it will survive, most trees never make it to maturity, they die, or are damaged, or felled, or are crowded out by bigger trees. So to be sure of getting your 3 mature, naturally-regenerating trees, you need to plant five young trees for each mature one, so that's **15 trees** per year – IF your footprint is the UK average of 11 tonnes of CO_2e .

Peter Gingold March 2020